
Intro

Iteration and variable reassignment can be handy, but they are the dark arts of computer
science. They open the flood gates to what we call data mutation, they're often inefficient, and
they make it very hard to parallelize programs. To a trained programmer, they're ugly and
needlessly complicated. What is the alternative? Recursion. This is how the functional
programmer writes good code.

Self-Access

Take a look at the next piece of code. Notice that since f's parent is global, it is able to
access the name f as defined in the global frame. In other words, it can refer to itself during
execution.

def f():
 return f
f()

This is important. It means that while we're evaluating f, we could potentially make another call
to f before the first one even finishes. Why would we do that? We'll see soon enough. In the
above example, f doesn't call itself. It only refers to itself. Now lets write a function that
actually calls itself.

def f():
 return f()
f()

Here, we open frame 1 to evaluate the function f. It returns another call to the function f, so
we open frame 2 to evaluate the function f. It returns another call to the function f, so we
open frame 3 to evaluate the function f. This keeps going ... forever! This is called a stack
overflow error, or sometimes a RecursionError if you're in the Python interpreter.

global f function f() [p=global]

f1: f
[p=global]

return

global f function f() [p=global]

f1: f
[p=global]

return

f2: f
[p=global]

return

f3: f
[p=global]

return

f4: f
[p=global]

return

f5: f
[p=global]

return

...

We need to be able to stop the recursion under some condition, eventually. How about we add
an if statement? It will basically say "if we're done, then we can stop". But now we also need
to define what it means to be "done", so let's add a variable n and say we're done when n
reaches 0. Now our code looks like this:

def f(n):
 if n == 0:
 return 1
 return f(n)
f(4)

It's pretty much the same as before. There's now a case that tests whether we've finished, but
right now we never actually move closer to finishing. In other words, we set up a finish line but
we're not getting any closer to it. In order for recursion to work, we need to do two things:

• Test whether we're done.
• Move closer to being done.

In our example, we said that being done means n reaches 0. For that to happen, we have to
make n smaller. How about we decrement it by one, each time we call the function recursively?

def f(n):
 if n == 0:
 return 1
 return f(n - 1)
f(4)

global f function f() [p=global]

...

f1: f
[p=global]

n

return

4

f2: f
[p=global]

n

return

4

f3: f
[p=global]

n

return

4

f4: f
[p=global]

n

return

4

f5: f
[p=global]

n

return

4

global f function f() [p=global]

f1: f
[p=global]

n

return

4

f2: f
[p=global]

n

return

3

f3: f
[p=global]

n

return

2

f4: f
[p=global]

n

return

1

f5: f
[p=global]

n

return

0
1

In frame f5, we finally arrive at n == 0. Now the if case passes, and we return 1. That value
climbs back up the stack of recursive frames until we see that f1's final return value is also 1.

That's the basic idea behind recursion. But how can we use it to make something useful? Well,
we need to involve the recursive call with another calculation. Here's a factorial function
that's very similar to the example we had before. Notice how we multiply the result of the
recursive call by a factor of n, to do something meaningful.

def f(n):
 if n == 0:
 return 1
 return n * f(n-1)
factorial(4)

Recursion is actually a lot like eating pie. It's very hard to eat an entire pie in one bite, so what
do we do? Make the problem smaller, by cutting out one bite-sized scoop from the pie. Then
repeat with the rest of the pie. This is what recursion is all about. Make the problem smaller by
cutting off one piece, then recursively address whatever is left of the problem. 

global f function f() [p=global]

f1: f
[p=global]

n

return

4

f2: f
[p=global]

n

return

3

f3: f
[p=global]

n

return

2

f4: f
[p=global]

n

return

1

f5: f
[p=global]

n

return

0
1

1

1

1

1

24

global f function f() [p=global]

f1: f
[p=global]

n

return

4

f2: f
[p=global]

n

return

3

f3: f
[p=global]

n

return

2

f4: f
[p=global]

n

return

1

f5: f
[p=global]

n

return

0
1

1

2

6

Test whether
we're done.

Move closer to
being done.

Use the recursive
call in a useful
calculation.

Before we get into code writing, there are two important ideas which you should know. Refer to
these two points while you're starting out.

• Recursion is all about making your parameters smaller.  
This should manifest in two ways. First of all, every recursive call you make should take in
smaller parameters than the call you're currently in. And second, your base case should
reflect the smallest value you ever want your parameters to have. (Don't address your
second-smallest or third-smallest parameter in the base case. Only the very smallest one.
Usually, if you need to use an if statement to break your base case down even further,
then you're doing something wrong.) We'll revisit this point in the next chapter.

• Stay in the same frame. 
You shouldn't get caught up worrying whether your recursive call works. You just need to
trust that it will do what you want. If you're testing out factorial(5), you should only
worry about what happens inside that frame. Don't worry how factorial(4) gets
handled, just assume it works and it will return 24. If you try to think about what goes on
inside the frame for factorial(4), and then factorial(3), and so on, then you've
fallen down a rabbit hole you'll never climb out of. Don't think about how the recursive call
works. Just think, "What should the recursive call evaluate to?" and assume it will evaluate
to that. Focus only on the current frame, assuming every recursive call outputs what it
should.

Practice: sum_lst
Write a function sum_lst that takes in a list and returns the sum of every element in the list.

def sum_lst(lst):
 ...

First things first, we need a base case. Our parameter is a list, so the smallest it'll ever be is an
empty list. We choose this as our base case. Since an empty list has nothing to sum, we'll
return 0.

def sum_lst(lst):
 if lst == []:
 return 0
 ...

Now we need to add in the recursive call. Remember, we have to give it a parameter smaller
than the one in the current frame. Let's try popping the last element off, and using the
shortened list as the argument to the recursive call. When you write this recursive call, think
about what it should evaluate to. Since we're giving it all but the last element in the list, it will
return the sum of every element except the last one. In order for our function to work, we have
to add the element we popped off, together with result of the recursive call.

def sum_lst(lst):
 if lst == []:
 return 0
 return lst.pop() + sum_lst(lst)

Here's what the environment diagram looks like, at the beginning of the initial call
sum_lst([1,2,3]).

At the end, it looks like this.

sum is actually a built-in function, and does the exact same thing as the function sum_lst that
we defined here. We'll see it come back a few chapters from now, when we're talking about
trees.

Practice: comprehension
Recall list comprehensions from the previous chapter. We will implement the same thing
recursively. It should take in a list lst, a function f, and a predicate pred. For example:

>>> comprehension([0,1,2,3,4,5], lambda x: x * x, lambda x: x % 2)
[1, 9, 25]

def comprehension(lst, f, pred):
 ...

lst

global sum_lst function sum_lst(lst) [p=global]

f1: sum_lst
[p=global] return

1 2 3

global sum_lst function sum_lst(lst) [p=global]

lstf1: sum_lst
[p=global] return

lstf2: sum_lst
[p=global] return

6

3

lstf3: sum_lst
[p=global] return 1

lstf4: sum_lst
[p=global] return 0

Notice f and pred shouldn't change in our recursive calls, so we will recurse on lst. That
means our base case should be the smallest possible input for lst, which is the empty list. If
that is our input, we'll return the empty list, since there are no elements in the comprehension.

def comprehension(lst, f, pred):
 if lst == []:
 return []
 ...

Now for the recursive call. It's input should be smaller than the input to the current frame, so
we will pass in lst[1:] as our argument. That recursive call would return the comprehension
on every element except the first one. We'll have to add in [f(lst[0])] at the beginning, if
the first element is to be included in our final answer.

def comprehension(lst, f, pred):
 if lst == []:
 return []
 first = [f(lst[0])] if pred(lst[0]) else []
 return first + comprehension(lst[1:], f, pred)

Notice that for sum_lst we made a smaller list by popping off elements, but in
comprehension we used list slicing instead. You could accomplish both problems either way.
The only difference is that popping mutates the original list, whereas slicing does not.

Variables as Parameters

Often times, you need to keep track of some information and change it across multiple
recursive calls. If you were solving things iteratively, you could just define a variable outside
your while loop, and then modify it from within. We can't do that with recursion, since we're
not able to change a variable that's in a different frame. The solution? Instead of storing that
information as an external variable, we can store it as a parameter to the recursive call.

Look at the next example. In the iterative solution, we keep track of i as a variable outside the
while loop. In the recursive solution, we keep track of i as a parameter whose default value is
the starting value of i.

def count(total): def count(total, i=0): 
 i = 0 i += 1 
 while i < total: print(i)  
 i += 1 if i < total:  
 print(i) return count(total, i) 

Practice: balanced
Let's try writing a function balanced, which takes in a string and returns whether the
parentheses are balanced within that string. For example:

>>> balanced(':) :(')
False

>>> balanced('((this many parens)')
False

>>> balanced('(yeeeee :) (haww(!))')
True

def balanced(s):
 ...

Our parameter is a string, so its smallest possible value is an empty string. We will use this as
our base case, and return True because there are no mismatched parentheses in an empty
string.

def balanced(s):
 if not s:
 return True
 ...

The argument to the recursive call has to be smaller than the current input. Let's do the same
thing we did in the previous examples, and slice off the first character in the string s. Now we
can make the recursive call balanced(s[1:]), which will return whether the rest of s is
balanced. The issue is, that doesn't give us enough information to determine whether s is
balanced or not.

In the last two practice problems, we only needed to know the first element, and the result of
the recursive call. That was enough to determine our output. But notice that for both examples
below, s[0] is '(' and balanced(s[1:]) is False. Yet, their outputs are different. It seems
we need more information than just those two things, to determine what our output should be.

>>> balanced('(hi)') >>> balanced('(hi(') 
True False 

This is where you would define an external variable, if we were solving this iteratively. Since
we're using recursion, we'll add another parameter instead. It will represent what depth of
parenthetical the string starts at. If it ends at depth 0, then it's balanced. Otherwise, it's not. In
the next line, each number represents the parenthetical depth at that point in the expression.

0 (1 (2) 1) 0 (1 (2 (3) 2) 1) 0

Adding in our brand new parameter, this is what we get:

def balanced(s, depth=0):
 if not s:
 return depth == 0
 ...

We have already determined the base case for s is the empty string. The base case for depth
is 0, since it's a number. But we could receive an input that's less than 0, or bigger than 0. Let's
address each of these cases individually.

If depth is negative at any point, that means we've encountered more end-parens than begin-
parens. In that case, s would be unbalanced so we can return False.

def balanced(s, depth=0):
 if not s:
 return depth == 0
 if depth < 0:
 return False
 ...

Now we have addressed the cases where s is empty, or depth is less than or equal to 0. If the
function still hasn't terminated, that means s is nonempty and depth is positive. It is time to
think about making a recursive call. Remember, we want to pass in a smaller string than we
took as input, so we'll slice s like we did before. But now we need to also pass in the
appropriate value for depth. If the letter we took off was a '(', then the rest of the string is
one level deeper so we should increment depth. If the letter we took off was a ')', then the
rest of the string is one level shallower so we should decrement depth. If the element we took
off was not a paren, then the depth would stay the same so we don't modify depth. In the
end, this is what we get:

def balanced(s, depth=0):
 if not s:
 return depth == 0
 if depth < 0:
 return False
 if s[0] == '(':
 return balanced(s[1:], depth + 1)
 if s[0] == ')':
 return balanced(s[1:], depth - 1)
 else:
 return balanced(s[1:], depth)

Remember, you can always add more params if you want more info. Here it works out well
because we need to keep track of what parenthetical depth we're at, across multiple recursive
calls. We'll talk more about designing base cases and planning recursion in the next chapter.

For extra practice, try
writing this function
iteratively. Analyze how
the two implementations
are similar and different.

