
Intro

This morning I’d like to talk a little bit about iterators and generators. We will start out with
similarities and differences, then we will see how to draw them in environment diagrams, and
we will finish with some examples. Happy learning!

Iterators

1. Access

First things first: how do we get an iterator object? This is a bit confusing, so we’ll start at the
top with iterables. By now you are familiar with iterables — things like lists, tuples, strings, etc.
We can index them. (Yes, all of them, not just lists!)
But, a lot of the time we just find ourselves writing lst[0], lst[1], lst[2], and so on. We
just want to get the elements of the sequence in order. It would be a lot more convenient if
there was some object that we could tell, “Okay, give me the next element.” Then we would
not have to keep track of the indices.
This is where iterators come in. We provide an iterable, and then the iterator object will feed us
the elements one by one, in order, just like we asked. To provide an iterable, we just use the
iter method. In summary:

Also note that, technically, the word “iterable” is also a blanket term for iterables, iterators, and
generators. That’s because all of these things are iterable, meaning that we are able to iterate
over them, using a for loop.

2. Environment Diagrams

Environment diagrams are the single best tool I know of for learning CS. (Yes, better than
computers. Actually.) They are already worth a significant fraction of your grade, thanks to
WWPD and similar questions which appear consistently on exams. But even more importantly,
environment diagrams are how you work your way through confusing bugs or edge cases you
don’t understand. This is why it’s so vital that you know how to represent everything in
environment diagrams. So, let’s talk about drawing iterators in environment diagrams, yay!

Iterables
* Lists
* Tuples
* Strings
* etc.

Iterators
* iter(list)
* iter(tuple)
* iter(string)
* range(integer)

iter(__)

access via
indexing

access using
next(__)

Example 1: Iterators and Mutability
Iterators have one job: to keep track of an index in an iterable.

lst = [0, 1, 2]
i = iter(lst)

In this environment diagram, lst is a list, and i is an iterator over that list. In the environment
diagram, we simply represent i as an iterator object holding a pointer to the very
beginning of lst.

lst = [0, 1, 2]
i = iter(lst)
next(i)

When we call next(i), the number 0 gets returned and we move the pointer in i so that it
points to the next element in lst.

Now that we see how to draw iterators in environment diagrams, let’s take a look at a confusing
edge case:

lst = [0, 1, 2]
i = iter(lst)
next(i)
lst.append(3)
next(i)
next(i)
next(i)

Will the last call to next cause an error, or will it return 3? Let’s draw the environment diagram.
Remember that append is a mutable function, so lst.append(3) does not make a new lst.
Rather, it changes lst so that 3 is at the end. So the first 4 lines should look like this:

lst = [0, 1, 2]
i = iter(lst)
next(i)
lst.append(3)

global
lst

i

0 1 2

iterator
object

global
lst

i

0 1 2

iterator
object

global
lst

i

0 1 2

iterator
object

3

Now the iterator object has no way to know that 3 was not originally in lst. So if we call
next(i) a few more times, we get 3 and not an error. At the very end, the environment
diagram looks like this:

lst = [0, 1, 2]
i = iter(lst)
next(i)
lst.append(3)
next(i)
next(i)
next(i)

Check that this makes sense to you, before you keep reading.

All right, now let’s consider a similar but different piece of code. What will happen — the same
thing, or something different?

lst = [0, 1, 2]
i = iter(lst)
next(i)
lst = lst + [3]
next(i)
next(i)
next(i)

The difference here is that we have lst = lst + [3] instead of lst.append(3).
Sometimes environment diagrams can get tricky, especially when we are assigning or
reassigning variables. Even though it may be tedious, please use the following process
whenever you see an equals sign. I have taught it to several students and they all got 100% or
very near to 100% on the midterm 2 WWPD.
1. Do not look at the left side of the equals sign.
2. Evaluate the right side of the equals sign. Draw the result somewhere with enough space.
3. Now look at the left side of the equals sign, and bind that value to what you just drew.

Continue to the next page to see what it looks like when we apply the process above to the
line lst = lst + [3]. 

global
lst

i

0 1 2

iterator
object

3

Ignore the left hand side of the
equals sign for now. Instead let’s
just evaluate lst + [3]. This is
drawn below the environment
diagram, and nothing is bound to
it yet.

This is important. Note that the
variable lst is not bound to the
list [0,1,2]. Rather, lst is just a
pointer to the list [0,1,2]. So,
when we reassign lst, this only
overwrites that pointer. It does not
overwrite the actual list [0,1,2].
The result is the environment
diagram to the right.

Note that nothing has changed the list [0,1,2], so the iterator object is still the same as
before we reassigned the variable lst. When we call next(i) it will return 1, and then 2, and
if we call next(i) again we will get an error. next(i) will never return 3.

Generators

1. Access

Sometimes we want the elements of a sequence, one by one, but we don’t already have that
sequence in a list, tuple, etc. That means we can’t use an iterator to get the elements we want.
Instead, we use something called a generator. Generators only compute a value once we
request it.
For example, imagine I have a generator over Fibonacci numbers called fib. When I call
next(fib) the first time, it yields 0. When I call next(fib) again, it yields 1. The nth time I
call next(fib), I will get the nth Fibonacci number.
So, how do I get the generator object I want? I have to specify the sequence it should give me.
This makes sense, since it couldn’t give me the next number in the sequence if it didn’t know
what the pattern was. To specify a pattern, I have to write a function. 

global
lst

i

0 1 2

iterator
object

0 1 2 3

global
lst

i

0 1 2

iterator
object

0 1 2 3lst

The function that specifies the pattern I want is called a generator function. When I call the
generator function, it does not give me the first number in the pattern. Instead, it gives me a
generator object. The generator object is what yields the pattern I want. To summarize:

This means that I can call a generator function multiple times, and then I can call next on each
of the resulting generator objects multiple times.

Make sure you understand everything above, before proceeding.

2. Environment Diagrams

All right, so now we know what generators are. How do we draw them? We will explore this
question in the following examples.

Example 2: Fibonacci Generator
Let’s say I want to get all the Fibonacci numbers, one by one. I can’t use an iterator since there
are infinite Fibonacci numbers, and iterators are only finite. Instead we can use a generator.

Remember how iterators just have to keep track of an index in an iterable? Well, generators are
a really similar idea. The difference is this: instead of keeping track of an index in an iterable,
we will be keeping tack of a line of code in a function. See the next page to see what it looks
like.

3

call the
generator
function

Generator Function
specifies the

desired pattern

Generator Object
yields elements from

the sequence
next(__)

Element
the next element
according to this
generator object

generator
function

generator
object 1

generator
object 2

generator
object 3

2

5

2

3
5

2

3
5

Take a look at this code. First we write a Fibonacci generator function, and then we assign the
variable g to a particular Fibonacci generator object. Don’t worry about how to write this
function yet — for now we will focus on being able to understand it.

def fib():
 cur, next = 0, 1
 while True:
 yield cur
 cur, next = next, cur + next

g = fib()

This corresponds to the environment diagram below:

At the beginning, the generator object points right under the function signature. When we
call next(g), the function executes until right after the first yield. The call to next will yield
0 and the environment diagram will look like this:

If we call next(g) again, then we will resume from where we left off in fib. The next line to
execute is the very bottom one, where cur and next both get reassigned to 1. Then we re-
enter the while loop and yield cur. The generator object’s pointer leaves off at this
yield, which is only coincidentally the same one we left off on before. Afterwards, the
environment diagram looks like this:

Make sure you understand this diagram before moving to the next page. 

global
g generator

object

def fib():
 cur, next = 0, 1
 while True:
 yield cur
 cur, next = next, cur + next

global
g

generator
object

def fib():
 cur, next = 0, 1
 while True:
 yield cur
 cur, next = next, cur + nextf1:fib

cur 0

next 1

f1:fib
cur 1

next 1

global
g

generator
object

def fib():
 cur, next = 0, 1
 while True:
 yield cur
 cur, next = next, cur + next

Example 3: Generator of Generators
Now that we know how to draw generator objects in environment diagrams, let’s talk a little bit
about how to write generator functions. The very first thing you want to do is think about how
many things you should be yielding. Typically we want to yield a lot of things — maybe
hundreds or even infinite — but we don’t want to have to write that many yield statements.
So let’s think about looping. We have seen 3 methods in this class: recursion, while, and for.
The latter two are mostly interchangeable, except for the behavior of while True, so we will
consider these 3 methods instead:

1. recursion
2. while True
3. for

Let’s consider them one by one. Think about implementing a fib generator function
recursively. We might try something like this:

def fib(n):
 if n <= 0:
 yield n
 yield fib(n-1) + fib(n-2)

There is a problem, though. Recall that a generator function does not return any elements of
the sequence we want. Instead it returns a generator object, and that yields the elements we
want. Look at the recursive calls above. Since fib is a generator function, these recursive calls
will not return numbers. Instead they will return new generator objects, and we can’t add
generator objects! So this will error. In general, this problem makes recursion a bad idea for
writing generator functions.

The two remaining options are while True and for. They are both handy, and suited to
different tasks:
* If you want to yield infinitely many elements, then use while True.
* If you want to yield finitely many elements, then use for.

Let’s put it to use. In the extra lab questions, there was a function called
remainders_generator(m). Instead of yielding numbers or strings like most generator
functions we will see in 61A, this generator function yields generator objects. (Meta, right?) Go
on to the next page to see some doctests.  

This might be
something

you want on
your cheat
sheet ;-)

x = remainders_generator(3)

How do we even started on something like this? As always, our very first step should be to
decide between using while True or using for. Refer back to the previous page if you need
to. Ask yourself, should remainders_generator(m) yield infinitely many things, or finitely
many things? Looking at the above doctests, we see it should yield finitely many things —
specifically, m things. It will yield m generator objects. That means we want a for loop.

We start out like this:
def remainders_generator(m):
 ???
 for r in range(m):
 ???

Okay, next step. What are we yielding in the for loop? Generator objects. That means we
need a generator function, so that we can call it to get the generator objects we need. We will
have to define a generator function.

def remainders_generator(m):
 def remainders(???):
 ???
 for r in range(m):
 yield remainders(???)

This is the tricky part. Does remainders need any parameters? Look back at the doctests. g1,
g2, and g3 all yield different things. That means we can’t use the same exact generator
function to make them. We need a parameter so that g1, g2, and g3 don’t all use the same
pattern. In the above function, r makes a good parameter since we know it is different each
time we call remainders. The result is something like this:

def remainders_generator(m):
 def remainders(r):
 ???
 for r in range(m):
 yield remainders(r)

(Example 3 continued on the next page.)  

g1 = next(x)
next(g1) —> 0
next(g1) —> 3
next(g1) —> 6
next(g1) —> 9
...

g2 = next(x)
next(g2) —> 1
next(g2) —> 4
next(g2) —> 7
next(g2) —> 10
...

g3 = next(x)
next(g3) —> 2
next(g3) —> 5
next(g3) —> 8
next(g3) —> 11
...

next(x) —>
StopIteration

Now we have finished writing remainders_generator, and we only have to write the
generator function remainders. Again recall the first step in writing a generator function:
choose between while True or for. Look at the doctests. g1, g2, and g3 are all generator
objects returned from a call to remainders. They yield infinitely many things, so use while
True. Now our function looks like this:

def remainders_generator(m):
 def remainders(r):
 while True:
 ???
 for r in range(m):
 yield remainders(r)

Here’s a tip that applies to generator functions, recursion, linked list problems, and pretty much
every code-writing question in 61A. (Maybe make a note of it.) The simplest line in the doctest
often tells you what your base case is. For reference, here are the simplest doctests for g1, g2,
and g3 from the previous page:

next(g1) —> 0
next(g2) —> 1
next(g3) —> 2

It looks like the first call to each generator object just yields the value of r that the generator
object was created from. Now we have this:

def remainders_generator(m):
 def remainders(r):
 while True:
 yield r
 ???
 for r in range(m):
 yield remainders(r)

Of course, this is not complete. Now g1 just yield 0 forever, g2 will yield 1 forever, and g3 will
yield 2 forever. Since we are yielding r each time, think about how we have to modify r to get
the correct value at every yield after the first one. In other words, what’s the pattern? Recall
from earlier, generator functions are just about writing down patterns. Here, we just increment
by m to get each successive call:

g1: 0, 3, 6, 9
g2: 1, 4, 7, 10
g3: 2, 5, 8, 11

The complete function is on the next page.

def remainders_generator(m):
 def remainders(r):
 while True:
 yield r
 r += m
 for r in range(m):
 yield remainders(r)

Check to see that this makes sense to you, before moving on.

Now let’s recap what we learned from that example:
* Check whether you want infinitely many things (while True), or finitely many things (for).
* Look at the simplest doctest to determine your base case.
* Frequently check your understanding with one of the doctests, as you write code.

Blurring the Line (bonus section)

There is nothing inherently special about iterators and generators in Python. We learn about
them because they make a lot of tasks easier, but they are not necessary to solve those tasks. It
is very important to recognize that the built in functions and data structures are not magic. In
fact, you could implement them yourself.

Whenever I come across a new concept like generators, I always think about how I would
implement it myself. This makes it clear that the built-ins are really nothing more than useful
code the designers of Python courteously wrote so you wouldn’t have to. For instance,
consider the Fibonacci generator we wrote in Example 2. We can achieve the same
functionality using nothing but a list and a higher order function.

Example 4: Fibonacci “Generator”
This task is more suited toward a lesson on higher order functions, so I will not go over the
solution process here. However, I encourage you to give it a go before peeking at the answer. If
you aren’t able to immediately solve it, don’t worry. Just make sure you understand why it
works.

def fib():
 lst = [0,1]
 def yield_next():
 lst.append(lst[0] + lst[1])
 return lst.pop(0)
 return yield_next

