
Intro 

Sometimes it's necessary to make multiple recursive calls, in order to solve one problem. 
Counting problems are a good example of this fact, and in this chapter we will learn how to 
solve them. First we'll talk about how to plan your base case, and then we'll move on to 
addressing the recursive calls. 

Practice: count_paths 

Recall from the previous chapter the anatomy of a recursive problem: 

• Test whether we're done. 
• If we're not done, move closer to being done. 
• Use the recursive call in a useful calculation. 

When we only have one parameter, these are pretty well-defined. For example in factorial, 
we only had the parameter n, so to "be done" meant that n == 0. This is more complicated 
when we have 2 or more parameters in our recursive function. What if one parameter is big, 
and the other is small? What does it mean then, to "be done" with solving the problem? 

Let's look at a specific example, called count_paths. It takes in two parameters height and 
width, which correspond the size of a rectangle grid. We have an interest in a caterpie on this 
grid, who can only move right or up. We want to know how many different paths the caterpie 
can take, in order to get from the bottom left corner to the top right corner of the grid. 

In order to solve this problem, we have to recurse on two different parameters. 

width

height

def count_paths(width, height): 
    ...



Just like before, the smallest value of our input will correspond to our base case. Now that we 
have two parameters for our input, we will just think of the smallest value for each of them 
individually. 

In this example, the base case for each parameter is 1. This leaves us a few possibilities to 
account for. Either width is in its base case (i.e. width == 1), or it is not. And similarly, either 
height is in its base case (i.e. height == 1), or it is not. Let's plan out what to do in each of 
these scenarios. We'll use a chart like the one below, because it makes it easier to organize our 
thoughts.

First, let's consider what the problem looks like when both parameters are in their base cases 
(i.e. width == 1 and height == 1). 

That means we should return 1, if width and height are both passed in as 1. We will fill in the 
first value in our chart correspondingly. 

height == 1 height > 1

width == 1

width > 1

width

height

width

height

The smallest value of width is 1. The smallest value of height is also 1.

width

height There is exactly one way for caterpie to get from 
the bottom left corner to the top right corner, 
and that is by just staying put.



Let's put these values into our chart. 

Now we are almost done with the problem. Let's recap. First we determined a base case for 
each parameter, individually. Then we made a chart that maps out whether each parameter is in 
its base case or not. And now, we also have finished filling in all the boxes where at least one of 
the parameters is in it's base case.  

height == 1 height > 1

width == 1 return 1 

width > 1

height == 1 height > 1

width == 1 return 1 return 1

width > 1 return 1 
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Now let's think about what to do when we're in 
the top right box — that is, width == 1 and 
height > 1. There is exactly one way for 
caterpie to get from the bottom of the grid to 
the top of the grid.

What if we're in the bottom left box? 
width > 1 and height == 1, so once 
again there is exactly one way for caterpie 
to get from the far left of the grid to the 
far right of the grid.



The only box left corresponds to both width and height being larger than 1. This is also the 
trickiest box, because it's the one where the recursion comes in. We need to split the problem 
into smaller ones — but how? 

Remember, the size of a recursive problem is just the size of its inputs. In order to make the 
problem smaller, we have to make the inputs smaller. In this example, there are exactly two 
ways to do that. We can either shrink width, or we can shrink height. Both of these 
possibilities were given to us in the problem description, where we learned that caterpie can 
either go right (shrinking width) or go up (shrinking height). 

Each possibility corresponds to one recursive call. If caterpie moves right, then there are 
count_paths(width-1, height) ways for caterpie to get to the top right corner. If 
caterpie moves up, then there are count_paths(width, height-1) ways for caterpie to 
get the top right corner. Since we want to calculate all possibilities total, we will add together 
the results of these recursive calls 

height == 1 height > 1

width == 1 return 1 return 1

width > 1 return 1 
count_paths(width - 1, height) 

+ 
count_paths(width, height - 1)
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If caterpie moves right, then width 
decreases by one because there's no way to 
reach any of the squares on the left column 
anymore. This corresponds to a recursive call 
count_paths(width - 1, height).

If caterpie moves up, then height 
decreases by one because there's no way to 
reach any of the squares on the bottom row 
anymore. This corresponds to a recursive call 
count_paths(width, height - 1).



Now the problem is done. The solution is literally just the filled-in chart. All that's left to do is 
translate the solution into Python. Each box could be its own if case, like so: 

def count_paths(width, height): 
    if width == 1 and height == 1: 
        return 1 
    if width == 1 and height > 1: 
        return 1 
    if width > 1 and height == 1: 
        return 1 
    if width > 1 and height > 1: 
        caterpie_goes_right = count_paths(width - 1, height) 
        caterpie_goes_up = count_paths(width, height - 1) 
        return caterpie_goes_right + caterpie_goes_up 

This is entirely correct, but it's also a little repetitive. We can make it look a little nicer, without 
changing how it works. 

def count_paths(width, height): 
    if width == 1 or height == 1: 
        return 1 
    else: 
        caterpie_goes_right = count_paths(width - 1, height) 
        caterpie_goes_up = count-paths(width, height - 1) 
        return caterpie_goes_right + caterpie_goes_up 

There we go! Make sure you understand this solution before moving on. 

Approach to Counting Problems 

The same approach applies to any problem where you're counting some quantity — whether 
that's how many paths caterpie can take across a grid, or how many ways you can add coins to 
make a dollar. Here's the general formula:  



1. Base Case 
• Find each parameter's individual base case. This is the smallest value that could be 

passed in for each parameter. 
• Make a chart that maps out whether or not each parameter is in its base case. 
• Fill in all the boxes where at least one parameter is in its base case. Be careful with this 

one; sometimes it can be tricky. For example, think of count_paths(1, 1). Many 
students are inclined to say there are zero ways for caterpie to get to the top right corner, 
when in fact there is one way: for caterpie to not move at all. 

2. Recursive Call 
• Look at the problem definition. It will explain how you're allowed to break the problem 

into smaller ones. Typically you can make a problem smaller by making some sort of 
decision. Does caterpie go up, or right? Do you use a dime, or something else? 

• For each smaller problem, make a recursive call with parameters that correspond to what 
the decision was. 

• Combine those recursive calls somehow, depending on what you want to do. For 
example you might add them up, multiply them, or put them in a list. 

Practice: knapsack_count 

There's a famous problem in computer science, called the knapsack problem. We have a 
knapsack which has a maximum weight that it can carry. We also have a list of items, which all 
have their own worth and weight. In the next chapter, we'll discuss this problem more and talk 
about how to find the best set of items to put in the knapsack, so that we maximize worth 
without going over the weight limit. For now, we'll just focus on counting how many valid 
solutions exist. 

def knapsack_count(weight, items): 
    # weight: the maximum capacity of our knapsack 
    # items:  [(worth, weight), (worth, weight), ...] 
    ... 
    # return: how many ways we can fill the knapsack 

To get started, let's follow the formula above. The first step is to find each parameter's 
individual base case. The smallest capacity for our knapsack is 0, so that will be the base case 
for weight. items is a list, and it will be smallest when it is an empty list. Let's make a chart. 

weight == 0 weight > 0

items == []

items != []



Now we start filling things in. If items == [], then we have no items that we can put in our 
knapsack. There is exactly one valid way to complete the problem, which is to leave our 
knapsack empty. 

Now let's consider the case where items != [] and weight == 0. This means we still have 
some items that we could put inside, but we have reached out weight limit. It is tempting to 
say we should return 1, because the only valid move is to not add in any more items. However, 
suppose it is possible for some items to have zero weight. There could be many different ways 
to continue, if there are many weightless items left in items. This tells us that we have the 
wrong base case, since the base case should be simple enough that it doesn't depend on what 
items we have available to us. In fact, the correct base case is weight < 0. If this is the case, 
then we have exceeded the weight limit of our knapsack, and (assuming there are no negative-
weight items) we have no valid ways to proceed. We return 0, because even by leaving our 
knapsack empty we will exceed the weight limit. 

We have reached the box where the recursion comes in. Now is a good time to refer back to 
the problem definition, because that will usually tell you what you can do to make the problem 
smaller. In particular, remember that shrinking the problem corresponds to making a decision. 
Here, we're trying to decide what items to put in the knapsack. One way to make that smaller is 
by making the decision about just one item: do we take the first item in the list, or do we not? 

If we decide not to take the first item in items, then that corresponds to a recursive call where 
our weight parameter stays the same and our new list of items is items[1:]. Alternatively, if 
we decide to take the first item in items, then that corresponds to a recursive call where our 
new maximum weight is weight-items[0][1] and our list of items is again items[1:]. 
Since we want to account for both possibilities, we will sum these recursive calls together. 

weight == 0 weight > 0

items == [] return 1 return 1

items != []

weight < 0 weight >= 0

items == [] return 0 return 1

items != [] return 0 



Examine how this problem works. On each recursive call, we make a decision about just one 
item in the list. Each decision corresponds to certain parameters. We keep going, making a 
decision about one item at a time, until either we exceed maximum capacity or we run out of 
items to bring. 

def knapsack_count(weight, items): 
    if items weight < 0: 
        return 0 
    if items == []: 
        return 1 
    with_first_item = knapsack_count(weight-items[0][1], items[1:]) 
    without_first_item = knapsack_count(weight, items[1:]) 
    return with_first_item + without_first_item 

Closing Remark 

In this chapter we used charts to map out each parameter in a recursive function. This turns out 
to be a pretty useful strategy to organize your thoughts, whether you're solving a counting 
problem or not. Try it out for the tree recursion problems in the next chapter, and see if you 
find it helpful.

weight < 0 weight >= 0

items == [] return 0 return 1

items != [] return 0 
knapsack_count(weight-items[0][1], items[1:]) 

+ 
knapsack_count(weight, items[1:])


